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The inviscid Burgers equation with random and spatially smooth forcing is
considered in the limit when the size of the system tends to infinity. For the one-
dimensional problem, it is shown both theoretically and numerically that many
of the features of the space-periodic case carry over to infinite domains as
intermediate time asymptotics. In particular, for large time T we introduce the
concept of T-global shocks replacing the notion of main shock which was con-
sidered earlier in the periodic case (1997, E et al., Phys. Rev. Lett. 78, 1904). In
the case of spatially extended systems these objects are no anymore global. They
can be defined only for a given time scale and their spatial density behaves as
r(T) ’ T−2/3 for large T. The probability density function p(A) of the age A of
shocks behaves asymptotically as A−5/3. We also suggest a simple statistical
model for the dynamics and interaction of shocks and discuss an analogy with
the problem of distribution of instability islands for a simple first-order
stochastic differential equation.
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1. INTRODUCTION

The d-dimensional forced Burgers equation

“tu+(u · N) u=n N2u − NF(x, t), u=−Nk (1)

which describes the dynamics of a stirred, pressure less and vorticity-free
fluid, has found interesting applications in a wide range of non-equilibrium



statistical physics problems. It arises, for instance, in cosmology where it
is known as the adhesion model, (1) in vehicular traffic, (2) or in the study of
directed polymers in random media. (3) The associated Hamilton–Jacobi
equation, satisfied by the velocity potential k,

“tk − 1
2 |Nk|2=n N2k+F(x, t), (2)

has been frequently studied as a nonlinear model for the motion of an
interface under deposition: when the forcing potential F is random, delta-
correlated in both space and time, Eq. (2) is the well-known Kardar–Parisi–
Zhang (KPZ) equation. (4) The case with large-scale forcing was considered
in refs. 5 and 6 as a natural way to pump energy in order to maintain a
statistical steady state. Burgers equation is then a simple model for study-
ing the influence of well-understood structures (shocks, preshocks, etc.) on
the statistical properties of the flow. As it is well known, Eq. (1) in the limit
of vanishing viscosity (n Q 0) displays after a finite time dissipative sin-
gularities, namely shocks, corresponding to discontinuities in the velocity
field. In the presence of large-scale forcing, it was recently stressed for
the one-dimensional case (7, 8) and also for higher dimensions, (9, 10) that the
global topological structure of such singularities is strongly related to the
boundary conditions associated to the equation. More precisely, when, for
instance, space periodicity is assumed, a generic topological shock structure
can be outlined. It plays an essential role in understanding the qualitative
features of the statistically stationary regime.

So far, the singular structure of the forced Burgers equation was
mostly investigated in the case of finite-size systems with periodic boundary
conditions. It is however frequently of physical interest to investigate
instances where the size of the domain is much larger than the scale, so as
to examine, for example, the role of Galilean invariance. (11) The main goal
of the present paper is to describe the singular structure of Burgers equa-
tion (1) in unbounded domains. To achieve this goal we consider the case
of spatially periodic forcing with a forcing scale Lf much smaller than the
system size L. More precisely, we assume that the force is random and
white in time, homogeneous, isotropic, smooth and L-periodic in space and
investigate the limit L/Lf ± 1, while keeping a constant injection rate of
energy. Hence, for a fixed size of a system L we consider a stationary
regime corresponding to the limit t Q . and then study the limit L Q .

with the L2 norm of the forcing growing like L. As we will see, most of the
concepts associated to infinite time asymptotics introduced for the periodic
case can be generalized in this limit as intermediate time asymptotics.

It is important to mention that the problem we are discussing has also
another interpretation which has no direct relation to Burgers equation. In
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fact, we are studying the structure of singularities for variational problems
associated to generic time-dependent Lagrangians in unbounded domains.
From this point of view the random forcing is just a natural way to
characterize generic time-dependence.

The paper is organized as follows. In Section 2 we give a brief exposi-
tion of the theory in the case of periodic forcing. In particular, we intro-
duce the variational approach to Burgers turbulence and present results on
the existence and the uniqueness of the main shock and the global mini-
mizer. In Section 3 we introduce the notion of T-global shocks and describe
their behavior in the time asymptotics Lf/urms ° T ° L/urms, where urms is
the root-mean-square velocity. We also discuss theoretical and numerical
results for the density of T-global shocks and the probability density func-
tion (PDF) of the age of shocks. In Section 4, we discuss an analogy with
stability theory for one-dimensional stochastic ordinary differential equa-
tion (ODE) and present a simple statistical model for the interaction of
shocks. Section 5 contains concluding remarks and, in particular, an inter-
pretation of the results in terms of an inverse cascade. Most of the results
of this paper are focusing on the one-dimensional case. We finish with a
brief discussion of possible extensions to the multi-dimensional case.

2. PERIODIC FORCING

In the case of smooth spatially periodic forcing potential F(x, t), it
was shown in the one-dimensional case (8) and for higher dimensions (9) that
a statistical steady state is reached at large times by the solution to the
Burgers equation. Taking the initial time at − ., the velocity field is
periodic in space and uniquely determined by the realization of the forcing.
At an arbitrary time t, this unique solution can be expressed in terms of the
following variational principle (12–14) involving the Lagrangian action A:

u(x, t)=Nx min
c: c(t)=x

[A(c, t)], (3)

A(c, t) — F
t

−.

[ 1
2 |ċ(y)|2 − F(c(y), y)] dy. (4)

The minimum in (3) is taken over all absolutely continuous curves c(y) of
Rd with y ¥ (−., t] such that c(t)=x. A curve minimizing the action in (3)
is called a one-sided minimizer. It corresponds to a fluid particle trajectory
which is not absorbed by shocks till time t. For all times y < t, such a
minimizer is a trajectory of the dynamical system corresponding to the
Lagrangian flow and thus satisfies the Newton equation

c̈(y)=−NF(c(y), y). (5)
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Since the force is potential and spatially periodic, the mean velocity

b —
1

Ld F
[0, L]d

u(x, t) dx (6)

is the first integral of (1). When the initial time is taken at − ., so that the
statistically stationary regime is reached, the mean velocity b is the only
information remaining from the initial condition. For simplicity, we con-
sider in the sequel the case of a vanishing mean velocity (b=0), but all the
results remain true for arbitrary b.

It is easy to show that for Lebesgue almost all x there exists a unique
one-sided minimizer. The locations where there are more than one mini-
mizer correspond to shock positions. Those are exactly the positions where
the velocity potential k(x, t), which is a Lipschitz function, is not differen-
tiable, so that the piecewise continuous velocity field u(x, t)=−Nk(x, t)
has jump discontinuities. As t Q − ., all the one-sided minimizers which
originated at time t converge backward-in-time to the trajectory of the
unique fluid particle which is never absorbed by a shock. This trajectory,
denoted cgm( · ), is called the global minimizer because it is an action-mini-
mizing trajectory at any time. The statement about uniqueness of the
global minimizer holds under some natural conditions on the forcing
potential (see, e.g., refs. 8 and 9). Shocks are generically born at some finite
time and then grow and merge. There exist a particular shock structure,
called the main shock (d=1) or the topological shock (d > 1) which has
always existed in the past. This shock can be constructed by unwrapping
the picture to the whole space Rd (see Fig. 1 for the case d=1). We then

x
main shock

L

t

global minimizer

tim
e

space

Fig. 1. Sketch of the unwrapped picture in space-time for d=1; each minimizer converges
backward in time to one of the periodic image of the global minimizer. The main shock is
defined as the location from which emanate two minimizers approaching different images of
the global minimizer.
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obtain a lattice of periodic boxes, each of them containing a periodic image
of the global minimizer and the topological shock corresponds to the set of
x-positions giving rise to several minimizers that approach different global
minimizers belonging to different images of the periodic box.

We focus now on the one-dimensional case with a space-periodic
forcing potential of period L. In this case, the global minimizer is a hyper-
bolic trajectory of (5) and is thus associated to a smooth unstable manifold
which is a smooth curve in the position-velocity phase-space (x, u). The
main shock is defined as the unique position giving rise to the left-most and
the right-most one-sided minimizers approaching the global one backward-
in-time. By definition, the trajectory of the global minimizer cgm(t) and the
main shock trajectory Xms(t) never intersect, so that they have to satisfy
Xms(t) < cgm(t) < Xms(t)+L. Hence, the large-scale displacement of the two-
sided minimizer is the same as for the main shock. The Lagrangian flow (5)
is a second-order stochastic ODE. Assuming the vanishing of the mean
velocity b, one may be tempted to think that the displacement of a typical
trajectory c(t) scales like the integral of the Brownian motion:

O(c(t) − c(0))2P 3 |t|3 when |t| Q .. (7)

However this scaling does not apply to the minimizers because the parti-
cularity of such trajectories cannot be ignored. Indeed, when investigating
the typical displacement of the global minimizer, we find that

O(cgm(t) − cgm(0))2P 3 |t| when |t| Q .. (8)

This result was obtained by numerical study of the behavior at large times
of the position of the main shock. This gives the large-time typical displa-
cement of the position of the main shock which, as we have seen above,
coincides up to a constant with the displacement of the global minimizer.
For the numerical investigation, we chose a forcing which is the sum of
independent random impulses acting at discrete ‘‘kicking’’ times. (15)

Between successive kicks, the solution to the Burgers equation decays. This
method is particularly efficient for obtaining the solution in the limit of
vanishing viscosity, as one can use between kicks the fast Legendre trans-
form method (16) which is directly connected with the variational principle
(3) and the Lagrangian picture of the flow. The position of the main shock
is obtained by a Lagrangian method which is based on the analysis of the
right-most and the left-most positions from which the two-sided minimizer
is approached. Figure 2 shows the diffusive-like behavior of the main shock
trajectory for a Gaussian forcing confined to the first three Fourier modes
in the case when the mean velocity b vanishes.
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Fig. 2. Average over 500 realizations of the position X(t) of the main shock as a function of
time for b=0 and a space-periodic forcing with period L=Lf.

The diffusive behavior of the global minimizer has also a simple
theoretical explanation. Indeed, the mean square displacement of the global
minimizer can be expressed through its velocity as

O(cgm(t) − cgm(0))2P=71F
t

0
ċgm(s) ds2

28 , (9)

where the velocity of the global minimizer ċgm(s) is a stationary random
process. The hyperbolicity of the global minimizer implies that the time
correlations for this process decay exponentially. Hence, there are just two
possibilities: the mean-square displacement (9) either grows linearly with
time, which gives (8), or it stays bounded in a limit t Q .. The latter
behavior can be easily ruled out since the trajectory of the global minimizer
does fluctuate.

3. STATISTICS OF T-SCALES IN LARGE-SIZE SYSTEMS AND PDF

FOR THE AGE OF SHOCKS

As we have discussed above, the existence of the main shock in the
spatially periodic situation follows from a simple topological argument.
The main shock is unique when the system is considered on the torus cor-
responding to its period (circle for d=1). However, if the system is con-
sidered on the whole real line (universal cover), then there exists, at each
moment of time, an L-periodic one-dimensional lattice of main shocks.
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Each of these shocks is associated to two minimizers (left-most and right-
most) which also form a periodic structure. In the case of the main shocks
the distance between these two minimizers tends to L as t Q − .. For all
other shocks the corresponding distance tends to 0. In this sense, the main
shocks are the only global shocks present in the system. There is also
another way to characterize the main shock. Namely, the main shock is the
only shock which existed forever in the past, that is, the main shock is
infinitely old, contrary to all other ( local) shocks, all of them being created
at a finite time and hence having a finite age. In other words, local shocks
can be traced backward in time only for a certain finite interval of time.
The length of this time interval is what we call the age A of the shock.

When we drop the periodicity condition and consider large-size
systems, the main shock disappears. But one can still introduce the notion
of T-global shocks, that is shocks which behave like the main shock when
observed during a time scale of the order of T. As in the case of periodic
boundary conditions, there are now also two equivalent ways to charac-
terize T-global shock. Geometrically, one can again consider left-most and
right-most minimizers associated to a given shock. After tracing them
backward in time for time intervals longer than a certain ‘‘correlation
time,’’ these two minimizers are getting close and start converging to each
other exponentially fast. T-global shocks are defined as shocks for which
this ‘‘correlation time’’ is larger than T. This means that for backward
times t ° T, one has d(t) N Lf, where d(t) is the distance between mini-
mizers. Equivalently, one can say that T-global shocks have a finite age
larger than T. Below, we study the statistics of the T-global shocks.

We start with a numerical investigation of the forced Burgers equation
in a domain of a size L, much larger than the forcing length-scale Lf. The
force is taken to be Gaussian, statistically homogeneous, white-noise in
time and characterized by its covariance

Of(x+a, t+y) f(x, t)P=B(a) d(y), (10)

where B is a smooth, L-periodic function. Lf is the correlation length,
chosen such that B(a) is concentrated at scales a < Lf ° L. The injection
rate of energy per unit length is kept constant (i.e., we choose the space
correlation such that B(0) 3 L). Such a hypothesis is essential because we
found that it prevents any L dependency of the root-mean-square velocity
urms — Ou2(x, t)P1/2. We will now study the behavior of the statistically sta-
tionary solution for the intermediate time asymptotics Lf/urms ° t °

L/urms. For very large but finite L, the problem is well-defined and we can
suppose that the initial condition is taken at − ., so that a statistical steady
state is achieved for the solution of the Burgers equation.
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In order to obtain a sketch of the behavior of the solution, the limit of
infinite aspect ratios L/Lf is investigated numerically using a kicked
forcing and the fast Legendre transform method (see Section 2). Moreover,
we consider here the case of a forcing whose spectrum is concentrated in
the wavenumber intervals |k| ¥ [pLf/L, 3pLf/L]. As we will see in Sec-
tion 5, the functional form of the forcing space correlation B(a) at large
scale a ± Lf plays an important role. Numerical observations suggest that,
at any time in the statistical steady state (obtained after sufficiently long
integration), the shape of the velocity profile is locally similar to the order-
unity aspect ratio problem, duplicated over independent intervals of size Lf

(see Fig. 3(a)). More particularly, when tracking the trajectories of fluid
particles backward in time, one can see that the convergence of the mini-
mizers to each other is far from uniform. Figure 3(b) shows that the
minimizers are forming different branches which are converging to each
other backward in time, defining in space time a tree-like structure. Even-
tually, the number of branches decreases and a unique trunk emerges
around the global minimizer. Note that the same type of behavior is also
observed for shocks (see Fig. 4(a)) by running forward in time. The inter-
mediate time asymptotics correspond to the time scale for which there is
still a large number of such branches.

The velocity field at a given time, taken for convenience to be t=0,
consists of smooth pieces separated by shocks. Let us denote by {Wj} the
set of intervals in [0, L), on which the solution u( · , 0) is smooth. The
boundaries of the Wj’s are the shock positions. Each of these shocks is
associated to a root-like structure formed by the trajectories of the various
shocks which have merged at times t < 0 to form the shock under consid-
eration (see Fig. 4(a)). This root-like structure contains the whole history of
the shock and in particular its age. Indeed, if the root has a finite depth,
the shock under consideration has only existed for a finite time. A T-global
shock is defined as a shock whose associated root is deeper than − T. One
can give the dual definition for T-global minimizers. All the smoothness
intervals Wj defined above, except that which contains the global mini-
mizer, will be entirely absorbed by shocks after a finite time (see Fig. 4(b)).
For each of these pieces, one can define a life-time Tj as the time when the
last fluid particle contained in this piece at time t=0 enters a shock. It
corresponds to the first time for which the shock located on the left of this
smooth interval at time t=0 merges with the shock located on the right.
When the life-time of such an interval exceeds T, the trajectory of this
latter fluid particle is called a T-global minimizer.

Hence, for any age T, one can define a set of T-scale objects in the
spatial domain [0, L) at a given time t. We define their spatial density as
the number of such objects divided by the size of the domain L. The
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Fig. 3. (a) Upper: snapshot of the velocity field for L=256Lf. Lower: zoom of the field in
an interval of length 10Lf, represented by dashed lines in the upper figure. (b) Minimizing
trajectories in space time for the solution to the randomly forced Burgers equation periodic in
space with period L=256Lf and over a time interval of length T=100. The various trajec-
tories are chosen sufficiently separated at time t=0 in order to lighten the picture. The
minimizers converge to each other in a rather nonuniform manner, giving rise to a tree-like
structure in space-time.
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Fig. 4. (a) Shock trajectories for aspect ratio L/Lf=32 and with T=10; the different gray
areas correspond to the space-time domains associated to the different smooth pieces Wj’s of
the velocity field at time t=0. (b) Sketch of the space-time evolution of a given smooth piece
Wj located between two shock trajectories X1(t) and X2(t) which merge at time Tj. The trajec-
tories of some fluid particles are represented; the shock trajectories are represented as bold
lines; the dashed curve represents the trajectory of the unique fluid particle that is simulta-
neously absorbed by both shocks X1 and X2 at the time of their merger. This trajectory is a
T-global minimizer if Tj > T.

density r(T) of T-global shocks is investigated numerically in the kicked
case by using a two-step method. Firstly, the simulation is run up to some
large time t for which the statistically stationary regime is reached;
secondly, each shock present at time t is tracked backward in time down to
the instant of its creation, giving an easy way to determine the density
r(T). We also average numerical results with respect to the forcing reali-
zations. It can be seen from Fig. 5, on which the density for three different
aspect ratios L=/Lf is presented, that the behavior of r(T) is indepen-
dent of L, and that it displays a power-law r(T) 3 T−2/3 in the interme-
diate asymptotic range Lf/urms ° T ° L/urms.

We now present a simple phenomenological argument to explain the
scaling exponent 2/3. Consider the solution at a given time (t=0, for
instance). Denote by a(T) the typical spatial separation scale for two
nearest T-global shocks. Obviously, a(T) ’ 1/r(T). The mean velocity of a
spatial segment of length a is given by

ba=
1
a

F
[y, y+a]

u(x, 0) dx. (11)

Since the expected value Ou(x, 0)P=0 it is natural to assume that for large
a one has the following asymptotics

F
[y, y+a]

u(x, 0) dx ’ `a, (12)
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Fig. 5. Density of T-global shocks as a function of T for three different system sizes
L/Lf=64, 128 and 256; average over 100 realizations.

which gives ba ’ a
−1/2 for the mean velocity fluctuations. Consider now the

rightmost minimizer corresponding to the left T-global shock and the
leftmost minimizer related to the right one. Since there are no T-global
shocks in between, it follows that the two minimizers we selected approach
each other backward in time for times of the order of − T. This means that
the backward-in-time displacement of a spatial segment of length O(a) is
itself O(a) for time intervals of the order of T. The corresponding displa-
cement is given as the sum of two competing effects: the first, a kind of
drift induced by the local mean velocity ba, is connected with the mean
velocity fluctuations and gives a displacement 3 baT; the second effect is a
standard diffusive contribution 3 T1/2 related to the diffusive behavior of
the minimizing trajectories. Taking both into account, we get

a ’ C1Ta
−1/2+C2T1/2, (13)

where C1 and C2 are numerical constants. It is easy to see that the domi-
nant contribution comes from the first term. Indeed, if the second term
dominates, i.e., a 3 T1/2, the first term then gives a contribution of the
order of a

3/2 which contradicts to (13). Hence, one should have a ’

C1Ta
−1/2, leading to the scaling behavior

a(T) 3 T2/3, r(T) 3 T−2/3. (14)
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As we have already discussed above, T-global shocks are shocks older than T.
Denote by p(A) the PDF for the age of shocks. More precisely, p(A) is a
density in the stationary regime of a probability distribution of the age A(t)
of a shock, say the nearest to the origin. It follows from (14) that the
probability of shocks whose age is larger than A decays like A−2/3, which
implies the following asymptotics for the PDF p(A):

p(A) 3 A−5/3. (15)

4. TWO RELATED STATISTICAL MODELS

We next discuss a very close analogy between the problem just con-
sidered and the dynamical behavior of a simple first-order stochastic ODE.
Consider the following one-dimensional stochastic Ito equation:

dX=f(X) dW(t), (16)

where 0 < C1 [ f(x) [ C2 < ., x ¥ R. We are interested in the stochastic
flow generated by (16). In other words, the aim is to understand the
dynamical properties in the large-time asymptotics of the trajectories cor-
responding to the solutions of (16) for different initial values. Let X1(t) and
X2(t) with t \ 0 be the two solutions associated to the initial values X1(0)
=x1 and X2(0)=x2. It is well-known that the difference [X1(t) − X2(t)] is
a martingale which does not change its sign; this implies that the limit

c(x1, x2) — lim
t Q .

[X1(t) − X2(t)] (17)

exists and is finite.
Consider first the case when f(x) is periodic. It is easy to see that

c(x1, x2) has to be equal to a period of the function f(x) (see, e.g.,
Fig. 6(a)). Let, for simplicity, the smallest period of f(x) be equal to 1.
Then, c(x1, x2) can take only two values: either 0 or 1. In fact, it is possible
to show (see refs. 17–20) that the following picture holds. There exists a
random periodic sequence of points x(k)=xg(w)+k, k ¥ Z, xg ¥ [0, 1)
such that c(x1, x2)=0 for all x1, x2 ¥ (xg(w)+k, xg(w)+k+1) and c(x1, x2)
=1 for x1 ¥ (xg(w)+k − 1, xg(w)+k) and x2 ¥ (xg(w)+k, xg(w)+k+1).
Moreover, in both cases, the convergence is exponential:

|c(x1, x2) − (X1(t) − X2(t))| ’ C exp(−lt), (18)

where l > 0 is a non-random Lyapunov exponent (see Fig. 6(b)). The
random variable xg(w) which determines the positions of the separation
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Fig. 6. (a) Behavior of the solutions to the stochastic ODE (16) for the periodic function
f(x)=2+sin x. Unwrapped trajectories of the solutions converging to one of the periodic
image. (b) Behavior of the solutions to the stochastic ODE (16) for the periodic function
f(x)=2+sin x. Time behavior, for a given realization, of the separation between two trajec-
tories x1(t) and x2(t) associated to two different initial conditions. The two trajectories
approach each other exponentially fast with a non-random rate l.

points x(k) depends on the realization w of the white noise dW(t). If we
consider the stochastic flow on the unit circle, then all the trajectories are
stable except the one originating from xg(w). The stability is governed by
the non-random positive Lyapunov exponent l. In contrast, the trajectory
which starts at xg(w) is unstable and pushes nearby trajectories away.
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Hence, xg(w) plays a role similar to that of the global minimizer for the
Burgers equation with a spatially periodic force. An exponentially small
neighborhood of it gets mapped into the whole unit circle apart from
another exponentially small interval which is the image of the rest of the
circle. This instability island around xg(w) is similar to the interval of fluid
particles which are not absorbed by shocks until time t.

All the results above in the case of periodic f(x) have been well-
known for about 20 years and were presented here just to emphasize an
analogy with the main shocks and minimizers for Burgers equation in a
periodic situation. At the same time, the dynamical behavior in the non-
periodic case is more complicated and much less studied. As we explain
below, this behavior is also very similar to the dynamical picture governed
by the repelling T-global shocks in the case of non-periodic Burgers equa-
tion. Since f(x) is non-periodic c(x1, x2)=0 and all trajectories are
asymptotic to each other as t Q .. However, as in the case of non-periodic
Burgers equation, this convergence is very non-uniform. Although there are
no globally unstable positions like x(k)=xg(w)+k, for a given time scale
T ± 1, one still has exponentially small T-instability islands which separate
different intervals of stability from each other. For a given time T, the
image under the stochastic flow of the T-instability islands covers almost
all the real line apart from exponentially small pieces which are images
of the stability intervals. Those exponentially small pieces, which we
call T-stability intervals play a role similar to that of the T-global shocks
in Burgers turbulence. For a larger time scale T1 ± T a majority of
T-instability island will become stable, while some of them will still be
unstable. Those islands are in fact T1-unstable. One can ask the same ques-
tion as studied above about the asymptotics of the density of T-instability
islands in the limit as T Q .. Our preliminary numerical results indicate
that the density of T-instability islands scales as T−1/2. Notice that this
scaling is different from the scaling T−2/3 in the case of Burgers equation.
We believe that in the case of a stochastic flow the T-instability islands and
the density of them can be defined and studied rigorously. The simplifica-
tion is connected with the absence of a slow drift which one has for Burgers
equation due to fluctuations of the average velocity. In the case of the
stochastic flow the whole asymptotic dynamical picture is formed by just
two factors: diffusion and hyperbolic contraction. As a result, the rigorous
analysis of the model seems to be a realistic task.

We finally suggest a simple statistical model which captures the essen-
tial characteristics of the dynamics and the interactions of T-global shocks
and T-stability intervals. We believe that this model is also quite interesting
on its own. Consider an infinite system of particles on a one-dimensional
integer lattice Z. Two different particles cannot occupy the same site, and
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some sites are in general not occupied. Each particle is associated to an
integer age A \ 0. The model consists in describing a discrete time evolu-
tion of particles. To get a configuration of particles at the next step, we
proceed as follows. First of all, with a probability 0 < p < 1, we generate
independently new particles in every non-occupied site and we set the age
A=0 for all newly born particles. Then, each particle independently jumps,
with a probability 1/2, either to the right or to the left by a distance 1/2
and we add 1 to the age of all particles. Notice that, after one time step, the
particles are located on the sites of the dual lattice. If there are two par-
ticles which jumped into the same point of the dual lattice, we then assume
that the older one absorbs the younger, that is we ascribe to this site a par-
ticle whose age is the maximum of the two ages of the merging particles. It
is easy to see that this dynamics reaches a statistical steady state and one
can define an integer-valued random variable A which is the age of the
particle closest to the origin, say from the right. The probability distribu-
tion of this random variable, namely the asymptotics as A Q . of the
probability p(A), is closely connected with the statistics of T-instability
intervals for the non-periodic stochastic flow which we discussed above.
A numerical study of the model suggests that p(A) scales like A−3/2 which
corresponds to the scaling T−1/2 for the density of T-instability islands. We
postpone the detailed numerical and theoretical analysis of the non-perio-
dic stochastic flow and the statistical model of interacting particles until a
future publication.

5. CONCLUDING REMARKS

We have studied the inviscid randomly forced Burgers equation with
non-periodic forcing on the whole real line started at t=−.. Our results
indicate the existence of stationary regime which corresponds to the veloci-
ties of one-sided minimizers and suggest the following picture. At any given
time t (say t=0) and any given x ¥ R, there exists at least one one-sided
minimizer. However, due to fluctuations of the positions of one-sided
minimizers, there are no global minimizers. This means that any fluid par-
ticle gets absorbed by a shock after a certain time. Any two one-sided
minimizers are asymptotic to each other backwards-in-time, that is the dis-
tance between them tends to zero as t tends to − .. However, this conver-
gence is very nonuniform. For fixed x, y ¥ R one-sided minimizers which
originated at t=0 in x and y will approach each other exponentially fast
beyond a certain correlation time T(x, y). This correlation time is of the
order of the maximum T for which a T-global shock exists between x
and y. One can say that T-global shocks form a hierarchical structure
separating different stability domains from each other. By stability domains
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we understand intervals for which one-sided minimizers converge expo-
nentially fast with a correlation time of the order of the turnover time
Lf/urms. The separation by T-global shocks form separation ‘‘walls’’
between these different stability intervals for times of the order of − T. For
larger backward times, one-sided minimizers from the neighboring stability
intervals are exponentially asymptotic to each other. Another interpreta-
tion of T-global shocks is connected with their time of creation. Every
shock can be traced backward only for a finite time interval. For T-global
shocks, this time interval which determines the age of the shock is larger
than T. Since all shocks have a finite age, it follows that there are no true
main shocks in the non-periodic situation. Our results suggest that the large-
T asymptotics of the density of T-global shocks follows the power-law
r(T) 3 T−2/3. This gives a power-law behavior with exponent 5/3 for the
PDF of the age of shocks: p(A) 3 A−5/3. Another related exponent is con-
nected with the absorption times, defined in the following way. The
absorption time T(a) is the time after which all fluid particles in the spatial
interval [ − a/2, a/2] are absorbed by shocks. Using the duality between
the forward-in-time behavior of fluid particles (minimizers) and the back-
ward-in-time behavior of shocks, we find that the absorption times
T(a) 3 a

3/2 at large a.
Notice that the power-law behavior of the density r(T) of T-global

shocks can be interpreted in term of a kind of inverse cascade in the spec-
trum of the solution (although there is no conserved energy-like quantity).
Indeed, the fluctuations (12) of the mean velocity suggest that, for large-
enough separations a, the velocity potential increment scales like

|k(x+a, t) − k(x, t)| 3 a
1/2. (19)

This behavior is responsible for the presence of an intermediate power-law
range with exponent − 2 in the spectrum of the velocity potential at wave-
numbers smaller than the forcing scale (see Fig. 7). This power-law range
corresponds for the velocity spectrum to an equipartition of kinetic energy,
meaning that the large-domain asymptotics may be considered in the same
universality class as the KPZ problem for interface dynamics. It is also
important to notice that, in order to obtain this − 2 range at small wave-
numbers, the spectrum of the forcing potential must go to zero faster than
k−2 as k Q 0. Otherwise, the leading behavior is non-universal and depends
on the functional form of the forcing correlation.

The randomly forced Burgers equation in an unbounded domain with
a different type of forcing was also considered in ref. 21, where it was
assumed that the forcing potential has at any time its global maximum and
its global minimum in a prescribed compact part of the space. Such a
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Fig. 7. Spectrum Ok̂2(k)P of the velocity potential in the stationary regime for the aspect
ratio L/Lf=128. This spectrum contains two power-law ranges: at wavenumbers k ± L/Lf,
the traditional 3 k−4 inertial range connected to the presence of shocks in the solution and,
for k ° L/Lf, an ‘‘inverse cascade’’ 3 k−2 associated to the large-scale fluctuations of k.

forcing leads to a completely different behavior. In particular, in this case
there exists a global minimizer located in a finite spatial interval for all
times and all other minimizers are asymptotic to it in the limit t Q ..

We finally stress that, in this paper, we have mostly discussed the one-
dimensional case. It is of particular interest to analyze the effects of non-
compactness of the domain and the intermediate time asymptotics in higher
dimensions. The notion of main shock is then replaced by that of topolog-
ical shock, (9, 10) which are no more isolated points, but spatially extended
objects. The natural problem in this setting is to study geometrical and
statistical properties of the T-global shocks and to find the asymptotic
behavior of their age distribution.
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